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A Nonmonotonic Theory of Probability
for Spin-1

2 Systems

Frederick M. Kronz1

Received November 1, 2004; accepted March 31, 2005

Kolmogorov’s theory of probability is monotonic, meaning that the probability of A
is less than or equal to the probability of B whenever A entails B. A nonmonotonic
theory of probability is obtained, if the greatest lower bound for probabilities is set at
−1 instead of 0, the value fixed by Kolmogorov’s positivity axiom. The new theory
retains Kolmogorov’s other axioms, and many important theorems still hold. It also has
substantial applicability: it can accommodate probabilities for spin- 1

2 systems while
preserving Boolean operations. That is to say, negative probabilities are here provided
with a homely setting in the quantum domain.
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1. A NONMONOTONIC THEORY OF PROBABILITY

It is not possible to preserve Boolean operations within the confines of the
standard theory of probability while accommodating probabilities predicted by
the formalism of quantum mechanics. Non-Boolean logics have been explored
extensively in the context of the foundations of quantum mechanics as a result.
Substantial motivation for considering a nonmonotonic theory of probability is
provided here by showing that it can accommodate probabilities for spin- 1

2 systems
while preserving Boolean operations.

Let C[S] denote the closure of a finite set S of basic propositions with respect
to ∨, ∧, ¬; that is to say, the Boolean operators that respectively correspond to
or, and, not. The axioms of a nonmonotonic theory of probability, which hold for
any A, B ∈ C[S] , are the following:

Extension:

P (A) ≥ −1
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Total probability:

P (A) = 1, if A is a tautology

Conditional probability:

P (A|B) = P (A ∧ B)/P (B), if P (B) �= 0

Additivity:

P (A ∨ B) = P (A) + P (B), if A �→ ¬B

The first replaces Kolmogorov’s (1950) positivity axiom, P (A) ≥ 0, the rest
correspond to his other axioms excluding countable-additivity. It can be shown
that the new axiom set is consistent, that its elements are logically independent,
and that it entails many of the theorems that can be derived using the standard
axiom set.2 . Three of these theorems will be used below and they are the following:

Negation:

P (¬A) = 1 − P (A)

Equivalence:

P (A) = P (B), if A �→ B and B �→ A

General additivity:

P (A ∨ B) = P (A) + P (B) − P (A ∧ B)

One interesting and important theorem of the standard axiom set fails to hold
in the new set. This theorem is the following:

monotonicity

P (A) ≤ P (B), if A �→ B

Thus, it is appropriate to refer to this theory as a nonmonotonic probability theory.
The strategy of inducing a new formal system by tweaking one or more of

the axioms of the standard system is familiar in the study of quantum structures.
Quantum logic was obtained by replacing the distributive law of classical logic with
ortho-modularity (Loomis, 1955).3 The resulting system was explored extensively
for several decades in the foundations of quantum mechanics. It did not ultimately
lead to a realistic interpretation of quantum mechanics as some of its proponents

2 Proofs of consistency and independence can be developed from Appendix ∗iv of (Popper, 1968); see
his model on p. 343 and note that his axioms B1 and A4′ correspond to Monotonicity and Positivity,
respectively. Proofs of the usual theorems (including those mentioned below) are provided in Chapter
2 of (Howson and Urbach, 1993). The axioms are presented in (Kolmogorov, 1950).

3 There are at least two other notable systems of quantum logics. One involves replacing distributivity
with modularity (Birkhoff and von Neumann, 1936), the other replaces bi-valence with tri-valence
(Reichenbach, 1948).
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had hoped, but it did result in a deeper understanding of the logical structure of
quantum mechanics. (For an excellent summary of these developments, see Foulis,
1999).

There are non-Kolmogorovian probability theories that invoke number fields
other than the reals. Gudder (1988) has developed a quantum probability theory
over the complex numbers. Khrennikov (1999) has developed a p-adic probability
theory in which limits of relative frequencies are determined using a nonstandard
metric. The p-adic number field is a type of non-Archimedean field. The non-
monotonic theory that is under consideration here is much more modest than the
two just mentioned in that it is over the real number field.

Complications arise when one tries to do theoretical justice to probabilities
obtained experimentally, meaning in actual spin measurements. There is strong ev-
idence suggesting that such situations require a generalization of quantum mechan-
ics. One viable approach is to replace projection-valued measures, the standard
textbook treatment of spin and other observables, with positive operator-valued
(POV) measures. Associated with the use of POV measures for spin is the thesis
of the “unsharp reality” of spin (Busch and Schroeck, 1989). It is a provocative
and well-argued position, so it is of substantial interest to determine whether the
nonmonotonic framework can handle a more realistic and sophisticated quantum
mechanical characterization of probabilities obtained in actual spin measurements.
This matter is beyond the scope of the current paper.

2. NEGATIVE PROBABILITIES IN THE TWO-SLIT EXPERIMENT

The two-slit experiment is widely used in discussions of the foundations of
quantum mechanics. It is easily discussed qualitatively, making it a good starting
place to consider negative probabilities in quantum interference, but a quantitative
treatment of it within quantum mechanics is quite technical. It is much better to
consider quantum interference phenomena involving spin- 1

2 systems, since they
are governed by a simple cos2(θ /2) law. A preliminary qualitative treatment of
the two-slit experiment is provided in this section to graphically motivate negative
probabilities. This is done using the standard portrayal of the two-slit experiment in
terms of probabilities. Three alternative portrayals are then introduced. It turns out
in light of the discussion of spin- 1

2 systems below that one of the three alternative
portrayals is better than the other two as well as the original.

In Figs. 1–3, A denotes the upper slit, B the lower slit, C the point on the
detection screen of maximal constructive interference. In what follows, X denotes
any arbitrary point on the detection screen. Because context removes ambiguity,
A [B] also denotes “the photon passes through slit A [B],” and C [X] denotes “the
photon is detected at C [X].” In typical portrayals of the experiment it is assumed
that P(A ∧ X) is obtained by closing off slit B (Fig. 1), P(B ∧ X) by closing off
slit A, and P((A ∨ B) ∧ X) by having both open. It is then noted that if photons
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Fig. 1. A: open, B: closed.

were particles, P((A ∨ B) ∧ X) would exhibit the additive pattern (Fig. 2), the sum
of P(A ∧ X) and P(B ∧ X), but that what is actually obtained is the interference
pattern (Fig. 3).

The usual conclusion drawn is that photons do not behave like classical parti-
cles experimentally when passing through the slits (although they do so in their in-
teraction with the detection screen). However, another conclusion seems to follow;
namely, that negative probabilities are involved. A comparison of Figs. 2 and 3 re-
veals that P ((A ∨ B) ∧ C) > P (A ∧ C) + P (B ∨ C), and so by General additivity
P (A ∧ B ∧ C) < 0.

Is the portrayal above of the two-slit experiment in terms of probability
correct? To see what is at issue, consider the following questions: Is it P(A ∧ X) or
P (A ∧ ¬B ∧ X) that is obtained when slit B is closed off? Similarly, is it P(B ∧ X)
or P (¬A ∧ B ∧ X) when slit A is closed off? Finally, is it P ((A ∨ B) ∧ X) or

Fig. 2. Additive pattern.



A Nonmonotonic Theory of Probability for Spin- 1
2 Systems 1967

Fig. 3. Interference pattern.

P(A ∧ B ∧ X) when both are open? These questions suggest at least four possible
portrayals of the three modes of the two-slit experiment, as indicated in Table I.

Only Portrayal 4 is viable, the others have divergent conditional probabili-
ties.4 The viability of Portrayal 4 is demonstrated in the next section. The non-
viability of the other three is shown in the Appendix. The upshot for the two-slit
experiment is this. The operational probability is P(A ∧ ¬B ∧ X) when slit A is
open and slit B is closed, P(¬A ∧ B ∧ X) when slit A is closed and slit B open,
and P(A ∧ B ∧ X) when both slits are open.

3. STERN–GERLACH EXPERIMENTS INVOLVING SPIN- 1
2 SYSTEMS

A paradigm example of a spin- 1
2 measurement involves the outermost electron

of a silver atom. Let z be the direction of motion of the atom, u be any direction
in the xy-plane (the plane perpendicular to z), and let spin-u denote the electron
observable 1/2-integral spin in the u-direction. Since there are just two possible
outcomes for a spin-u measurement, +1 and −1 (in units of h

/
2), the spin-u

operator has two eigenvalues, denoted here as u+ and u−, and their respective
eigenvectors, |u+〉 and |u−〉. Spin-u is measured as follows. First, the spin-u
eigenvalues of the outermost electron of the silver atom are correlated with the
position of the atom’s center of mass along the u-axis. Passing the atom through
an inhomogeneous magnetic field that is oriented in the u-direction creates the
correlation. When the atom emerges from the field it is possible to measure spin-u

4 It is quite possible that the divergence is due to the unphysical idealization of sharp measurements, and
that it does not occur in the case of un-sharp measurements. If so, then it may well be that one of the
other three portrayals (i.e., other than portrayal 4) may be more appropriate for such measurements.
I wish to thank one of the anonymous referees for the International Journal of Theoretical Physics
for this suggestion.
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Table I. Four Portrayals

Modes Portrayal 1 Portrayal 2 Portrayal 3 Portrayal 4

A open, B closed A A A ∧ ¬B A ∧ ¬B
A closed, B open B B ¬A ∧ B ¬A ∧ B
A open, B open A ∨ B A ∧ B A ∨ B A ∧ B

indirectly by measuring the position of the atom with respect to the u-axis using
a detecting plate; position near the positive u-axis corresponds to u+ and position
near the negative u-axis to u−.

Suppose now that the detecting plate in the experiment above is replaced
with a beam stop that only blocks atoms in the lower beam (those that have a
position along the negative u-axis). The atoms that are not blocked by the beam
stop are now in the eigenstate |u+〉, meaning that if these atoms were subsequently
measured for spin-u the outcome would be the value corresponding to u+ with
probability 1. More generally if the atoms were subsequently measured for spin-w,
where w is an angle θ in the xy-plane from u, then they would yield the outcome
w+ with probability cos2(θ /2) and w− with probability cos2((π + θ )/2), which
equals sin2(θ /2).5

The experiments that are used to show the applicability of nonmonotonic
probabilities are just slightly more complicated than the one above.6 The required
feature is quantum interference. It is brought about in a beam of spin systems
using an analyzer loop, which consists of two Stern–Gerlach magnets that have
the same length and field strength, are in sequence, and are oppositely oriented.
Let z be the beam’s direction of motion, and y′ be some direction in the plane
orthogonal to z. If the first magnet is oriented in the y′-direction, the second is
oriented in the −y′-direction and the loop is called a y′-analyzer loop. The first
separates the beam into two sub-beams each corresponding to one of the spin-y′

eigenstates; the second bends the beams back to their original line of motion. If
both loop channels are open, then the spin state of the systems in the beam exiting
the loop is the same at it was when it entered the loop.

In the experimental set up of special interest, a source produces a beam of
spin- 1

2 systems in the eigenstate |y+〉 moving in the z-direction. The beam enters
a y′-analyzer loop, and after exiting the loop the beam elements are measured
for spin-y′′ (see Fig. 4). The directions y′ and y′′ are in the xy-plane, which is
perpendicular to the direction of motion z; the angle between y and y′ is θ and that
between y and y′′ is φ. There are two channels through the loop, one corresponding
to y′+ and the other to y′−. A beam stop may be placed in one of the channels
of the loop, meaning that there are three relevant modes of the experiment. The

5 This is for ideal (possibly unrealizable) spin measurements. Experimentally realistic spin measure-
ments may be un-sharp at least to some degree (as noted in Section 1 above). Only the ideal case is
considered in this paper.

6 See Chapters 6–11 of (Feynman et al., 1965) for a more details about these kinds of experiments.
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Fig. 4. A y′-analyzer loop in mode-1 followed by a y′′ + detector.

modes are denoted by the variable χ : both channels open (χ = 1), only the y′+
channel open (χ = 2), and only the y′− channel open (χ = 3). An experimental
configuration is characterized by an ordered triplet 〈χ, θ, φ〉, which corresponds
to particular choices for the mode χ and the orientation 〈θ, φ〉, θ for the loop and
φ for the third magnet. The action of the loop with respect to each of the three
modes above is this.

• If both channels are open then the two beams merge together and the
emerging beam has the same spin state |y〉 and intensity I as the entering
beam.

• If the y′− channel is blocked, then the emerging beam is in spin state |y ′+〉
and has a reduced intensity I ′ = I cos2(θ/2).

• If the y′+ channel is blocked, then the emerging beam is in spin state |y ′−〉
and has a reduced intensity I ′ = I sin2(θ/2).

After a beam emerges from the analyzer loop, it is measured for spin-y′′ using
a Stern–Gerlach magnet oriented in the y′′ direction—the angle between y and y′′

is φ. Let I′′ denote the intensity of the y′′+ beam that emerges from this magnet.
The following results are then obtained.

• If both channels are open, then I = I cos2(φ/2).
• If the y′− channel is blocked, then I = I ′ cos2((φ − θ )/2) =

I cos2(θ/2) cos2((φ − θ )/2).
• If the y′+ channel is blocked, then I = I ′ cos2((φ − θ + π )/2) =

I sin2 θ sin2((φ − θ )/2).

It is assumed that I is normalized to unity by choice of suitable units (without
loss of generality).

Outcomes of the three modes of the spin-interference experiments under
consideration will now be characterized in terms of the probability theory. To
facilitate doing so, the key events in the experiment are denoted as follows.

A: The system passes through the y′+ channel,
B: The system passes through the y′− channel,
C: The system activates the y′′+ detector.
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The following operational probabilities for the three modes and arbitrary
orientation 〈θ, φ〉 summarizes the information presented above.

P (A ∧ B ∧ C|〈1, θ, φ〉) = cos2(φ/2)

P (A ∧ ¬B ∧ C|〈2, θ, φ〉) = cos2(θ/2) cos2((φ − θ )/2)

P (¬A ∧ B ∧ C|〈3, θ, φ〉) = sin2(θ/2) sin2((φ − θ )/2)

A crucial interpretive move is now made by introducing the following two sets of
identifications.

P (A ∧ ¬B ∧ C|〈1, θ, φ〉) = P (A ∧ ¬B ∧ C|〈2, θ, φ〉)
P (¬A ∧ B ∧ C|〈1, θ, φ〉) = P (¬A ∧ B ∧ C|〈3, θ, φ〉)

These identifications involve the supposition that probabilities obtained op-
erationally in mode 2 and mode 3 are significant from an interpretive point of
view for the corresponding events in mode 1 where quantum interference occurs.
That is, probabilities that are obtained operationally (quantum measured relative
frequencies) in one context (mode 2 or mode 3) may be carried over and assigned
to another (mode 1) in which they cannot be obtained operationally. Such prob-
abilities are associated with virtual events, and may be thought of ontologically
speaking as characterizing strengths of probabilistic propensities. This interpretive
move is reasonable, but its justification will be provided elsewhere. To simplify the
equations above the terms C and 〈1,θ ,φ〉 are suppressed. The three key equations
for mode 1 are then expressed as follows.

P (A ∧ B) = cos2(φ/2)

P (A ∧ ¬B) = cos2(θ/2) cos2((φ − θ )/2)

P (¬A ∧ B) = sin2(θ/2) sin2((φ − θ )/2)

The marginals, P(A) and P (B), can be derived from these equations us-
ing Equivalence, since A is logically equivalent to (A ∧ B) ∨ (A ∧ ¬B) and
similarly for B. The marginals can then be used to obtain the conditionals,
P (A|B) and P (B|A), using Conditional probability. The disjunctives P (A ∨ B)
also follow from the equations above using Equivalence since A ∨ B is log-
ically equivalent to (A ∧ B) ∨ (A ∧ ¬B) ∨ (¬A ∧ B). Thus, one obtains the
following.

P (A) = cos2(φ/2) + cos2(θ/2) cos2((φ − θ )/2)

P (B) = cos2(φ/2) + sin2(θ/2) sin2((φ − θ )/2)

P (A|B) = cos2(φ/2)/(cos2(φ/2) + sin2(θ/2) sin2((φ − θ )/2))

P (B|A) = cos2(φ/2)/(cos2(φ/2) + cos2(θ/2) cos2((φ − θ )/2))

P (A ∨ B) = cos2(φ/2) + cos2(θ/2) cos2((φ−θ )/2) + sin2(θ/2) sin2((φ−θ )/2)
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Table II. Interference Involving Spin- 1
2 States, for 0 ≤ θ ≤ π

and 0 ≤ φ ≤ π

Range Min at Max at

P(A) [0, 2] (0, π ), (π , π ) (0, 0)
P(B) [0, 2] (0, π ), (π , π ) (π , 0)
P(A|B) [0, 1] (θ , π ) (0, φ)
P(B|A) [0, 1] (θ , π ) (π , φ)
P(A∨B) [0, 2] (0, π ), (π , π ) (0, 0), (π , 0)

P(A), P(B), and P(A ∨ B) range from 0 to 2. For P(A) the minimum occurs at
(0, π ) and (π, π ), the maximum at (0, 0). For P(B) the minimum also occurs at
(0, π ) and (π, π ), but the maximum at (π, 0). For P(A ∨ B) the minimum occurs
at (π, 0) and (0, π ), and the maximum at (0, 0) and (π, π ). P(A|B) and P(B|A)
range from 0 to 1. For P(A|B) the minimum occurs at (θ, π ) for 0 ≤ θ ≤ π and the
maximum at (0, φ) for 0 ≤ φ < π . For P(B|A) the minimum occurs at (θ , π ) for
0 ≤ θ ≤ π , the maximum at (π, φ) for 0 ≤ φ ≤ π .7 These results are summarized
in Table II.

It is noteworthy that the conditionals are within the usual range for
Kolmogorovian probabilities, but that the marginals and disjunctives have double
the usual range. Since the theorem Negation holds for nonmonotonic probabili-
ties, it follows that the range for inferred probabilities in the spin- 1

2 experiments
is from −1 to 2.8

4. INTERPRETIVE ISSUES

A crucial move is made in going from operational probabilities to inferred
probabilities: the probability that a spin- 1

2 system passes through one channel and
not the other (and then activates the detector) when both paths through the analyzer
are open (mode 1) is equated with the probability that is measured when that
channel is open and the other is blocked (mode 2 or 3). This move is characterized
above as interpretive since the terms event and probability are being used in two
distinct senses. In contexts where a channel is blocked, the event either actually
occurs or it does not, and the probability is operational in that it is measured as
a relative frequency of occurrence. In the context where both channels are open,
the event in question (passing through one channel and not the other) is regarded

7 P(A|B) and P(B|A) are discontinuous at (0, π ) and (π , π ). For (0, π ): P(A|B) → 0 as θ → 0, P(A|B)
→ 1 as φ → π ; P(B|A) → 0 as θ → 0, P(B|A) → 1/2 as φ → π . For (π , π ): P(A|B) → 0 as θ →
π and P(A|B) → 1/2 as φ → π ; P(B|A) → 0 as θ → π , P(B|A) → 1 as φ → π .

8 On the contrary, I show that the ranges for the inferred probabilities of interest (marginals, conditionals,
disjunctives) in the general case of elliptical polarization is also −1 to 2; the corresponding minimum
and maximum values are obtained by dividing the coordinate values in Table II above by 2.
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as a virtual event rather than actual, and the associated probability is regarded as
inferred rather than operational compare Feynman (1987).

It would be misleading to characterize the key move in the following manner:
One must assume that when both analyzer branches are open, photons pass through
the branches with rates (or frequencies) the same as what detection-frequencies in
the blocked-branch contexts indicate. This characterization is misleading because
it underplays the role of two key distinctions: actual versus virtual events, and
operational versus inferred probabilities. The move is perhaps best characterized
as this: Probabilities for the occurrence of a virtual event, meaning one that cannot
be directly measured in a given configuration of an experimental set-up, are iden-
tified with probabilities obtained for the corresponding actual event in another
configuration where they can be directly measured. Of course, this complicates
matters from an ontological point-of-view since we are now committed to both
actual and virtual events. But a more robust ontology such as this is worth con-
sidering, if it might serve to capture something very deep and important about the
quantum realm. That is to say, it is quite reasonable to include virtual events in
one’s ontology, if doing so serves to reveal a very interesting and unusual abstract
structure lying beneath the surface phenomena. That is the case here. The abstract
structure that is revealed by (in effect) including virtual events in one’s ontology
is a nonmonotonic probability theory.

The interpretive considerations introduced above are both minimal and pro-
visional. A suitable interpretive framework for a nonmonotonic probability theory
is to be specified much more fully elsewhere. It is fitting to say a bit more about
how this might be pursued. Popper (1968) and Mellor (1971) provide engaging
and provocative accounts of operational probabilities in terms of probabilistic
propensities. It seems that these accounts could provide the right sort of inspira-
tion for developing the desired framework, the association of inferred probabilities
with a new type of probabilistic propensity, a virtual propensity. That is to say,
an interpretation of a nonmonotonic probability theory might be developed that is
based on a distinction between actual and virtual propensities. Of course, such a
propensity interpretation for nonmonotonic probability would need to provide an
account of virtual propensities that explains what it means for a virtual event to
have a probability that is greater than 1 or less than 0 as well as an account of the
significance of the failure of monotonicity.

Finally, it is worth mentioning that the term “interpretive” is not meant to
suggest that nonoperational probabilities and their associated virtual events are
unphysical. On the contrary, their physical significance is strongly analogous to
the physical significance of virtual photons and their associated probabilities in
the Gupta–Bleuler framework for quantum electrodynamics (involving an indef-
inite metric). One might be inclined to draw an analogy between the analysis
of spin measurements developed above and counterfactual analyses of EPR-type
experiments in which polarizer setting are changed at the wings while considering
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counterfactually the outcomes for other polarizer settings. However, the analogy
with quantum electrodynamics is more robust than the analogy with counterfac-
tual discussions of EPR experiments. Negative probabilities arise in the former
but not in the latter. Moreover, there are characterizations of EPR-type experi-
ments involving negative probabilities (Rothman and Sudarshan, 2000), and such
characterizations are much more in line with the thesis developed above than
characterizations of them involving counterfactuals.

5. SUMMARY

A nonmonotonic theory of probability is formulated in Section 1 that extends
the range of probabilities beyond the normal range, the new range being from −1
to 2. The two-slit experiment was briefly considered in Section 2 to demonstrate in
a qualitative manner how this theory might be applicable in the quantum domain.
The theory was then shown to capture a broad range of interference experiments
involving spin- 1

2 systems in a quantitative manner in Section 3. Some interpretive
issues were raised in Section 4. Some tentative stances were adopted in connection
with these issues; a much fuller discussion of them will be provided elsewhere.
The theory may require modification or generalization to have applicability to
N-state systems for N > 2. It may also require modification or generalization to
handle probabilities obtained in experimentally realistic spin measurements that
require the use of positive operator-valued measures. The need for such changes
will be discussed much more fully elsewhere.

APPENDIX: DIVERGENT CONDITIONAL PROBABILITIES

Four Portrayals were distinguished in Section 2 (see Table I). In Section 3,
probabilities in distinct modes were identified and then used to derive other prob-
abilities using Portrayal 4. A claim was made to the effect that this portrayal is the
only viable one of the four. The viability of Portrayal 4 was shown in Section 3.
The task of showing the nonviability of the other three was relegated to this ap-
pendix. To show this, it suffices to consider cases in which φ = 0 for Portrayals 1
and 2, and θ = π /2 for Portrayal 3.

In Portrayal 1 the operational probabilities are these:

P ((A ∨ B) ∧ C|〈1, θ, 0〉) = 1

P (A ∧ C|〈2, θ, 0〉) = cos4(θ/2)

P (B ∧ C|〈3, θ, 0〉) = sin4(θ/2)

Proceeding by analogy with the treatment of Portrayal 4, two sets of identities are
assumed, the terms Z and 〈1, θ, 0〉 are suppressed, and attention is then focused
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on these probabilities:

P (A ∨ B) = 1

P (A) = cos4(θ/2)

P (B) = sin4(θ/2)

From the theorem General Addition and the probability assignments above it
follows that

P (A ∧ B) = P (A) + P (B) − P (A ∨ B)

= sin4(θ/2) + cos4(θ/2) − 1

It will suffice to show that the inferred probability P(B|A) diverges. P(B|A) is
obtained from the inferred probabilities P(A) and P (A ∧ B) using axiom Con-
ditional probability. The resulting equation is then obtained using well-known
trigonometric identities.

P (B|A) = P (A ∧ B)/P (A)

= (sin4(θ/2) + cos4(θ/2) − 1)/ cos4(θ/2)

= −2 tan2(θ/2)

It is clear that P (B|A) → −∞ as θ → 0 from the right. The remaining portrayals
(2 and 3) are dealt with below following the approach above but in an abbreviated
form.

In Portrayal 2, the following probability assignments are obtained (making
appropriate identifications and simplifications).

P (A ∧ B) = 1

P (A) = cos4(θ/2)

P (B) = sin4(θ/2)

Using Conditional probability and the assignments above leads to the following
equations.

P (B|A) = P (A ∧ B)/P (A)

= 1/ cos4(θ/2).

It is clear P (B|A) → +∞ as θ → π from the left.
In Portrayal 3, the following probability assignments are obtained when θ =

π /2 (making appropriate identifications and simplifications).

P (A ∨ B) = (1 + cos(φ))/2

P (A ∧ ¬B) = (1 + sin(φ))/4

P (¬A ∧ B) = (1 − sin(φ))/4
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Using Logical equivalence it follows that

P (A ∨ B) = P (A ∧ B) + P (A ∧ ¬B) + P (¬A ∧ B)

Pr(A) = P (A ∧ B) + P (A ∧ ¬B)

Simple algebraic manipulation of the first equation yields

P (A ∧ B) = P (A ∨ B) − P (A ∧ ¬B) − P (¬A ∧ B)

These equations are then obtained using Conditional probability and algebraic
manipulation:

P (B|A) = P (A ∧ B)/P (A)

= 2 cos(φ)/(2 cos(φ) + sin(φ) + 1)

It is clear that P (B|A) → +∞ as φ → arccos(−4/5) from the right.
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